Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0613820170270060673
Journal of Life Science
2017 Volume.27 No. 6 p.673 ~ p.679
Interaction of CLIP-170, a Regulator of Microtubule Plus End Dynamics, with Kinesin 1 via KIF5s
Jang Won-Hee

Joung Young-Ju
Lee Won-Hee
Kim Moo-Seong
Kim Sang-Jin
Urm Sang-Hwa
Seog Dae-Hyun
Abstract
Microtubules are long rods in the cytoplasm of cells that plays a role in cell motility and intracellular transport. Microtubule-based transport by motor proteins is essential in intracellular transport. Kinesin 1 is a molecular motor protein that mediates the intracellular transport of various membranous vesicles, mRNAs, and proteins along microtubules. It is comprised of two heavy chains (KHCs, also called KIF5s) and two light chains (KLCs). KIF5s bear a motor domain in their amino (N)-terminal regions and interact with various cargoes through the cargo-binding domain in their carboxyl (C)-terminal regions. To identify proteins interacting with KIF5B, yeast two-hybrid screening was performed, and a specific interaction with the cytoplasmic linker protein 170 (CLIP-170), a plus end microtubule-binding protein, was found. The coiled-coil domain of CLIP-170 is essential for interactions with KIF5B in the yeast two-hybrid assay. CLIP-170 bound to the cargo-binding domain of KIF5B. Also, other KIF5s, KIF5A and KIF5C, interacted with CLIP-170 in the yeast two-hybrid assay. In addition, glutathione S-transferase (GST) pull-downs showed that KIF5s specifically interacted with CLIP-170. An antibody to KIF5B specifically co-immunoprecipitated CLIP-170 associated with KIF5B from mouse brain extracts. These results suggest that kinesin 1 motor protein may transport CLIP-170 in cells.
KEYWORD
Cargo, CLIP-170, kinesin 1, microtubule, microtubule motor
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)